These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Long-term elevation of free fatty acids leads to delayed processing of proinsulin and prohormone convertases 2 and 3 in the pancreatic beta-cell line MIN6. Author: Furukawa H, Carroll RJ, Swift HH, Steiner DF. Journal: Diabetes; 1999 Jul; 48(7):1395-401. PubMed ID: 10389844. Abstract: To explore the role of chronically elevated free fatty acids (FFAs) in the pathogenesis of the hyperproinsulinemia of type 2 diabetes, we have investigated the effect of FFAs on proinsulin processing and prohormone convertases PC2 and PC1/PC3 in MIN6 cells cultured in Dulbecco's modified Eagle's medium with or without 0.5 mmol/l FFA mixture (palmitic acid:oleic acid = 1:2). After 7 days of culture, the percent of proinsulin in FFA-exposed cells was increased (25.9 +/-0.3% intracellular and 75.4 +/- 1.2% in medium vs. 13.5 +/-0.2 and 56.2 +/- 4.1%, respectively, in control cells). The biosynthesis and secretion of proinsulin and insulin were analyzed by comparing the incorporation of [3H]Leu and [35S]Met. In pulse-chase studies, proinsulin-to-insulin conversion was inhibited, and proinsulin in the medium was increased by 50% after 3 h of chase, while insulin secretion was decreased by 50% after FFA exposure. Levels of cellular PC2 and PC3 analyzed by Western blotting were decreased by 23 and 15%, respectively. However, PC2, PC3, proinsulin, and 7B2 mRNA levels were not altered by FFA exposure. To test for an effect on the biosynthesis of PC2, PC3, proinsulin, and 7B2, a protein required for PC2 activation, MIN6 cells were labeled with [35S]Met for 10-15 min, followed by a prolonged chase. Most proPC2 was converted after 6 h of chase in control cells, but conversion was incomplete even after 6 h of chase in FFA-exposed MIN6 cells. Media from chase incubations showed that FFA-exposed cells secreted more proPC2 than controls. Similar inhibitory effects were noted on the processing of proPC3, proinsulin, and 7B2. In conclusion, prolonged exposure of beta-cells to FFAs may affect the biosynthesis and posttranslational processing of proinsulin, PC2, PC3, and 7B2, and thereby contribute to the hyperproinsulinemia of type 2 diabetes. The mechanism of inhibition of secretory granule processing by FFAs may be through changes in Ca2+ concentration, the pH in the secretory granules, and/or other factors that may influence the activation and function of the convertases.[Abstract] [Full Text] [Related] [New Search]