These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Preoperative PET activation for assessment of motor cortex area in precentral chondroma.
    Author: Schreckenberger M, Spetzger U, Sabri O, Meyer P, Schulz G, Hermanns B, Krombach G, Gilsbach J, Buell U.
    Journal: Surg Neurol; 1999 Jul; 52(1):24-9. PubMed ID: 10390168.
    Abstract:
    BACKGROUND: A main problem in the preoperative planning for precentral tumors is the exact assessment of the spatial relationship between the tumor and the functionally relevant brain areas, which may be difficult using only morphologically oriented imaging (CT, MRI). Therefore, we applied motor activation PET and PET/MRI overlay in a patient with a precentral tumor. DESCRIPTION: We report the case of a 21-year-old woman suffering from progressive right-sided headache and intermittent dysesthesia of the left leg. MRI showed a hypointense tumor with inhomogenous contrast enhancement in the right precentral area. For preoperative assessment of the spatial relationship between the tumor and the motor cortex area, the patient underwent two F-18-fluorodeoxyglucose positron emission tomography (PET) scans (1. resting condition and 2. motor activation of the left leg) and subsequent calculation of subtraction images of activation minus rest. Fusion of PET and MRI data (PET/MRI overlay) was performed for bimodal function and morphology presentation. PET revealed an activation pattern behind and below the tumor, indicating that the motor cortex area was shifted to the back. PET findings were confirmed by intraoperative electrophysiology. Cortical stimulation combined with intraoperative neuronavigation localized the motor area of the left foot and leg exactly at the dorsal border, below and lateral to the lesion. After complete resection of the solid tumor, histopathological examination revealed a chondroma. The postoperative course was uneventful, and the patient was discharged without neurological deficits. CONCLUSIONS: This case shows that biomodal imaging (PET/MRI) provides a noninvasive exact assessment of functionally important cortex areas for preoperative planning in patients with cerebral lesions.
    [Abstract] [Full Text] [Related] [New Search]