These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mass spectrometric analysis of arachidonyl-containing phospholipids in human U937 cells. Author: Li C, McClory A, Wong E, Yergey JA. Journal: J Mass Spectrom; 1999 May; 34(5):521-36. PubMed ID: 10390857. Abstract: The human histiocytic lymphoma U937 cell line contains a rich source of the 85 kDa cytosolic phospholipase A2 (cPLA2). DMSO-differentiated U937 cells were used as a model to investigate the free arachidonic acid release, the arachidonate distribution and the phospholipid source of arachidonate upon Ca2+ ionophore stimulation. A combination of several chromatographic and mass spectrometric techniques was employed in this study. The amount of free arachidonic acid (AA) released upon stimulation, the arachidonate content in total lipids and in each of the phospholipid classes were determined by gas chromatography/mass spectrometry (GC/MS). Glycerophosphoethanolamine (GPE) was found to be the major pool of arachidonate in differentiated human U937 cells (55%) and glycerophosphocholine (GPC) and glycerophosphoinositol (GPI) contributed 22 and 8%, respectively. Upon Ca2+ ionophore stimulation, GPE class lost the largest amount of arachidonate, followed by GPC class. GPI class, however, gained a substantial amount of arachidonate. Most of the arachidonate depleted from GPE and GPC was recovered as free AA, some of which was rapidly esterified into GPI species. GC/MS with electron capture negative chemical ionization provided excellent sensitivity for the measurement of arachidonic acid which was derivatized to its pentafluorobenzyl ester. Intact phospholipid molecular species including the arachidonyl-containing phospholipid species were identified using capillary high-performance liquid chromatography/continuous-flow liquid secondary ion mass spectrometry (CF-LSIMS). No specificity was found for releasing free AA among the arachidonyl-containing GPE and GPC species upon Ca2+ ionophore stimulation. CF-LSIMS provided a sensitive and effective means of detecting intact phospholipid species.[Abstract] [Full Text] [Related] [New Search]