These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genotypic diversity of Acidovorax strains isolated from activated sludge and description of Acidovorax defluvii sp. nov.
    Author: Schulze R, Spring S, Amann R, Huber I, Ludwig W, Schleifer KH, Kämpfer P.
    Journal: Syst Appl Microbiol; 1999 May; 22(2):205-14. PubMed ID: 10390871.
    Abstract:
    Fluorescence in situ hybridization of activated sludge samples from a municipal wastewater treatment plant using oligonucleotide probes specific for Acidovorax demonstrated that these bacteria are highly abundant in this environment. For the targeted cultivation of representatives belonging to this genus, isolates grown on agar plates after serial dilution were screened by whole-cell hybridization with specific probes. The obtained strains clustered in two phylogenetic groups as determined by 16S rRNA gene sequence analyses. The isolates of one cluster were phylogenetically and genotypically closely related to A. delafieldii. In contrast, the strains of the other cluster were genotypically and phenotypically distinct from the hitherto known Acidovorax species. Therefore, a new species, Acidovorax defluvii sp. nov., was proposed for these strains. The main characteristics of the newly defined species are as follows: Gram-negative, motile or non-motile rods with rounded ends, often with large polyhydroxybutyrate granules. In broth cultures flocs are formed. Test for cytochrome oxidase is positive with all strains. The majority of strains is catalase positive and reduces nitrate. All strains are metabolically inactive against most carbohydrates and organic acids. Fatty acid patterns are typical for the genus Acidovorax. The guanine-plus-cytosine content of DNAs varies between 62 and 64 mol%. The type strain of A. defluvii is BSB411T (DSM 12644). A new 16S rRNA-targeted oligonucleotide probe reacting by in situ hybridization with all known Acidovorax species, including A. defluvii sp. nov., was designed.
    [Abstract] [Full Text] [Related] [New Search]