These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of palmitate on carbohydrate utilization and Na/K-ATPase activity in aortic vascular smooth muscle from diabetic rats.
    Author: Smith JM, Solar SM, Paulson DJ, Hill NM, Broderick TL.
    Journal: Mol Cell Biochem; 1999 Apr; 194(1-2):125-32. PubMed ID: 10391132.
    Abstract:
    Several investigators have reported that carbohydrate metabolism is suppressed in blood vessels from diabetic (Db) rats. However, it is not known if metabolites from the reciprocal increase in oxidation of long-chain fatty acids that accompanies insulin-deficiency exacerbates the suppression of this pathway in the Db blood vessels. Such inhibition may have particularly deleterious consequences in vascular smooth muscle since aerobic glycolysis is believed to preferentially fuel the sarcolemmal Na/K ATPase in this tissue. Therefore, this study evaluated the effect of physiological (0.4 mM) and elevated (1.2 mM) concentrations of the long-chain fatty acid palmitate on both carbohydrate utilization and Na/K-ATPase activity in aorta from insulin-deficient Db rat. Thoracic aorta were removed from 10 week Db (streptozotocin 60 mg/Kg , i.v.) or control (C) rats and intima-media aortic preparations were incubated in the absence or presence of palmitate. Glycolysis (microM/g dry wt/h) and glucose oxidation (microM/g dry wt/h) were quantified using 3H-glucose and 14C-glucose, respectively. Na/K-ATPase activity was estimated by the measurement of 86rubidium uptake in the absence and presence of 2 mM ouabain. In the absence of exogenous palmitate, glycolysis (p < 0.05), glucose oxidation (p < 0.01) and the estimated ATP production from exogenous glucose were decreased in aorta from Db rat. However, despite this diminished rate of glycolysis, Na/K ATPase activity was similar in Db and C aorta. Palmitate (0.4 mM) inhibited Na/K ATPase activity and glucose oxidation to a similar extent in both Db and C but had no effect on glycolysis in either group. Elevation of palmitate to 1.2 mM had no additional inhibitory effect on glucose oxidation, Na/K ATPase activity or glycolysis in either the Db or C aorta. The metabolism of exogenous palmitate restored the ATP production in Db to control values. These data demonstrate that, despite the diminished glycolysis and glucose oxidation demonstrated in the Db tissue, Na/K ATPase activity was comparable in the C and Db aorta, in the absence or presence of exogenous long-chain fatty acid. Therefore, the accelerated oxidation of palmitate in diabetic vascular smooth muscle had no additional inhibitory effect on glycolysis or Na/K ATPase activity. These data suggest that Na/K ATPase activity in vascular smooth muscle is not impaired by the altered pattern of substrate utilization that occurs in insulin-deficient Db rats.
    [Abstract] [Full Text] [Related] [New Search]