These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Involvement of group VI Ca2+-independent phospholipase A2 in protein kinase C-dependent arachidonic acid liberation in zymosan-stimulated macrophage-like P388D1 cells. Author: Akiba S, Mizunaga S, Kume K, Hayama M, Sato T. Journal: J Biol Chem; 1999 Jul 09; 274(28):19906-12. PubMed ID: 10391937. Abstract: We investigated the possible involvement of group VI Ca2+-independent phospholipase A2 (iPLA2) in arachidonic acid (AA) liberation in zymosan-stimulated macrophage-like P388D1 cells. Zymosan-induced AA liberation was markedly inhibited by methyl arachidonoyl fluorophosphonate, a dual inhibitor of group IV cytosolic phospholipase A2 (cPLA2) and iPLA2. We found that a relatively specific iPLA2 inhibitor, bromoenol lactone, significantly decreased the zymosan-induced AA liberation in parallel with the decrease in iPLA2 activity, without an effect on diacylglycerol formation. Consistent with this, attenuation of iPLA2 activity by a group VI iPLA2 antisense oligonucleotide resulted in a decrease in zymosan-induced prostaglandin D2 generation. These findings suggest that zymosan-induced AA liberation may be, at least in part, mediated by iPLA2. A protein kinase C (PKC) inhibitor diminished zymosan-induced AA liberation, while a PKC activator, phorbol 12-myristate 13-acetate (PMA), enhanced the liberation. Bromoenol lactone suppressed the PMA-enhanced AA liberation without any effect on PMA-induced PKC activation. Down-regulation of PKCalpha on prolonged exposure to PMA also decreased zymosan-induced AA liberation. Under these conditions, the remaining AA liberation was insensitive to bromoenol lactone. Furthermore, the PKC depletion suppressed increases in iPLA2 proteins and the activity in the membrane fraction of zymosan-stimulated cells. In contrast, the zymosan-induced increases in iPLA2 proteins and the activity in the fraction were facilitated by simultaneous addition of PMA. Although intracellular Ca2+ depletion prevented zymosan-induced AA liberation, the translocation of PKCalpha to membranes was also inhibited. Taken together, we propose that zymosan may stimulate iPLA2-mediated AA liberation, probably through a PKC-dependent mechanism.[Abstract] [Full Text] [Related] [New Search]