These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cysteine residues in a synthetic peptide corresponding to human follicle-stimulating hormone beta-subunit receptor-binding domain 81-95 [hFSH-beta-(81-95)] modulate the in vivo effects of hFSH-beta-(81-95) on the mouse estrous cycle. Author: Grasso P, Rozhavskaya-Arena M, Reichert LE. Journal: Regul Pept; 1999 May 31; 81(1-3):67-71. PubMed ID: 10395410. Abstract: We have previously reported that synthetic peptide amides corresponding to subdomains of the human FSH 3-subunit, hFSH-beta-(33--53) and hFSH-beta-(81--95), interact with the external domain of the FSH receptor in two in vitro model systems. Consistent with these in vitro observations, we found that intraperitoneal (i.p.) administration of each of these peptides prolonged vaginal estrus in normally cycling mice in vivo. Both hFSH-beta-(33--53) and hFSH-beta-(81--95) contain cysteine (Cys) residues with free sulfhydryl groups of potential significance in receptor interactions. To assess the possible involvement of these groups in the in vivo effects of hFSH-beta-(33--53) and hFSH-beta-(81--95), synthetic peptide analogs were prepared in which all Cys residues were replaced with serine (Ser). In the present study, we demonstrate that the in vivo effect of hFSH-beta-(33--53) on the mouse estrous cycle, extension of vaginal estrus, was not changed by substitution of Cys-51 with Ser. In contrast, mice receiving the Ser-substituted analog of hFSH-beta-(81--95) had normal estrus stages, but were arrested in diestrus. hFSH-beta-(33--53)-(81--95), a linear peptide encompassing both domains, also prolonged vaginal estrus. The Ser-substituted analog of this peptide, however, prolonged vaginal estrus in some of the mice tested and induced cycle arrest at diestrus in others. hFSH-beta-(90--95), the active subdomain at the C-terminus of hFSH-beta-(81--95), extended vaginal estrus, but diestrus stages were of normal duration. Its Ser-substituted analog, however, prolonged the estrus stage of the majority of mice treated, but induced diestrus arrest in some. The differing responses to these peptides are presumably due to interactions of the synthetic peptides with different regions of the FSH receptor. This further suggests that one consequence of ligand interaction with multiple receptor binding domains may be variable effects on ovarian function, and that Cys to Ser analogs may have value in the design of a novel class of synthetic peptides capable of fertility regulation and control.[Abstract] [Full Text] [Related] [New Search]