These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Axonal regeneration of descending brain neurons in larval lamprey demonstrated by retrograde double labeling. Author: Zhang L, McClellan AD. Journal: J Comp Neurol; 1999 Aug 09; 410(4):612-26. PubMed ID: 10398052. Abstract: In larval lamprey, the large, identified descending brain neurons (Müller and Mauthner cells) are capable of axonal regeneration. However, smaller, unidentified descending brain neurons, such as many of the reticulospinal (RS) neurons, probably initiate locomotion, and it is not known whether the majority of these neurons regenerate their axons after spinal cord transection. In the present study, this issue was addressed by using double labeling of descending brain neurons. In double-label control animals, in which Fluoro-Gold (FG) was applied to the spinal cord at 40% body length (BL; measured from anterior to posterior from tip of head) and Texas red dextran amine (TRDA) was applied later to the spinal cord at 20% BL, an average of 98% of descending brain neurons were double labeled. In double-label experimental animals, FG was applied to the spinal cord at 40% BL; two weeks later the spinal cord was transected at 10% BL; and, eight weeks or 16 weeks after spinal cord transection, TRDA was applied to the spinal cord at 20% BL. At eight weeks and 16 weeks after spinal cord transection, an average of 49% and 68%, respectively, of descending brain neurons, including many unidentified RS neurons, were double labeled. These results in larval lamprey are the first to demonstrate that the majority of descending brain neurons, including small, unidentified RS neurons, regenerate their axons after spinal cord transection. Therefore, in spinal cord-transected lamprey, axonal regeneration of descending brain neurons probably contributes significantly to the recovery of locomotor function.[Abstract] [Full Text] [Related] [New Search]