These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phenotypic analysis of seizure-prone mice lacking L-isoaspartate (D-aspartate) O-methyltransferase.
    Author: Kim E, Lowenson JD, Clarke S, Young SG.
    Journal: J Biol Chem; 1999 Jul 16; 274(29):20671-8. PubMed ID: 10400700.
    Abstract:
    Within proteins and peptides, both L-asparaginyl and L-aspartyl residues spontaneously degrade, generating isomerized and racemized aspartyl residues. The enzyme protein L-isoaspartate (D-aspartate) O-methyltransferase (E.C. 2.1.1.77) initiates the conversion of L-isoaspartyl and D-aspartyl residues to normal L-aspartyl residues. This "repair" reaction helps to maintain proper protein conformation by preventing the accumulation of damaged proteins containing abnormal amino acid residues. Pcmt1-/- mice manifest two key phenotypes: a fatal seizure disorder and retarded growth. In this study, we characterized both phenotypes and demonstrated that they are linked. Continuous electroencephalogram monitoring of Pcmt1-/- mice revealed that abnormal cortical activity for approximately 50% of each 24-h period, even in mice that had no visible evidence of convulsions. The fatal seizure disorder in Pcmt1-/- mice can be mitigated but not eliminated by antiepileptic drugs. Interestingly, antiepileptic therapy normalized the growth of Pcmt1-/- mice, suggesting that the growth retardation is due to seizures rather than a global disturbance in growth at the cellular level. Consistent with this concept, the growth rate of Pcmt1-/- fibroblasts was indistinguishable from that of wild-type fibroblasts.
    [Abstract] [Full Text] [Related] [New Search]