These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A dual inhibitor of platelet-derived growth factor beta-receptor and Src kinase activity potently interferes with motogenic and mitogenic responses to PDGF in vascular smooth muscle cells. A novel candidate for prevention of vascular remodeling. Author: Waltenberger J, Uecker A, Kroll J, Frank H, Mayr U, Bjorge JD, Fujita D, Gazit A, Hombach V, Levitzki A, Böhmer FD. Journal: Circ Res; 1999 Jul 09; 85(1):12-22. PubMed ID: 10400906. Abstract: PP1 has previously been described as an inhibitor of the Src-family kinases p56(Lck) and FynT. We have therefore decided to use PP1 to determine the functional role of Src in platelet-derived growth factor (PDGF)-induced proliferation and migration of human coronary artery smooth muscle cells (HCASMCs). A synthetic protocol for PP1/AGL1872 has been developed, and the inhibitory activity of PP1/AGL1872 against Src was examined. PP1/AGL1872 potently inhibited recombinant p60(c-src) in vitro and Src-dependent tyrosine phosphorylation in p60(c-srcF572)-transformed NIH3T3 cells. PP1/AGL1872 also potently inhibited PDGF-stimulated migration of HCASMCs, as determined in the modified Boyden chamber, as well as PDGF-stimulated proliferation of HCASMCs. Surprisingly, in addition to inhibition of Src kinase, PP1/AGL1872 was found to inhibit PDGF receptor kinase in cell-free assays and in various types of intact cells, including HCASMCs. PP1/AGL1872 did not inhibit phosphorylation of the vascular endothelial growth factor receptor KDR (VEGF receptor-2; kinase-insert domain containing receptor) in cell-free assays as well as in intact human coronary artery endothelial cells. In line with the insensitivity of KDR, PP1/AGL1872 had only a weak effect on vascular endothelial growth factor-stimulated migration of human coronary artery endothelial cells. On treatment of cells expressing different receptor tyrosine kinases, the activities of the epidermal growth factor receptor, fibroblast growth factor receptor-1, and insulin-like growth factor-1 receptor were resistant to PP1/AGL1872, whereas PDGF alpha-receptor was susceptible, albeit to a lesser extent than PDGF beta-receptor. These data suggest that the previously described tyrosine kinase inhibitor PP1/AGL1872 is not selective for the Src family of tyrosine kinases. It is also a potent inhibitor of the PDGF beta-receptor kinase but is not a ubiquitous tyrosine kinase inhibitor. PP1/AGL1872 inhibits migration and proliferation of HCASMCs probably by interference with 2 distinct tyrosine phosphorylation events, creating a novel and potent inhibitory principle with possible relevance for the treatment of pathological HCASMC activity, such as vascular remodeling and restenosis.[Abstract] [Full Text] [Related] [New Search]