These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Aggregation and species coexistence of ectoparasites of marine fishes.
    Author: Morand S, Poulin R, Rohde K, Hayward C.
    Journal: Int J Parasitol; 1999 May; 29(5):663-72. PubMed ID: 10404260.
    Abstract:
    Interspecific interaction may lead to species exclusion but there are several ways in which species can coexist. One way is by reducing the overall intensity of competition via aggregated utilisation of fragmented resources. Known as the 'aggregation model of coexistence', this system assumes saturation and an equilibrium number of species per community. In this study we tested the effects of interspecific aggregation on the level of intraspecific aggregation among ectoparasites of marine fishes (36 communities of gill and head ectoparasite species). If parasite species are distributed in a way that interspecific aggregation is reduced relative to intraspecific aggregation then species coexistence is facilitated. We found a positive relationship between parasite species richness and fish body size, controlling for host phylogeny. A positive relationship between infracommunity species richness and total parasite species richness was also found, providing no evidence for saturation. This result supports the view that infracommunities of parasites are not saturated by local parasite residents. The observed lack of saturation implies that we are far from a full exploitation of the fish resource by parasites. Ectoparasites were aggregated at both population and species levels. However, only half of the ectoparasite communities were dominated by negative interspecific aggregation. We found that infracommunity parasite species richness was positively correlated with the level of intraspecific aggregation versus interspecific aggregation. This means that intraspecific aggregation increases compared with interspecific aggregation when total parasite species richness increases, controlling fish size and phylogeny. This supports one assumption of the 'aggregation model of coexistence', which predicts that interspecific interactions are reduced relative to intraspecific interactions, facilitating species coexistence.
    [Abstract] [Full Text] [Related] [New Search]