These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cloning of interferon-stimulated gene 17: the promoter and nuclear proteins that regulate transcription.
    Author: Perry DJ, Austin KJ, Hansen TR.
    Journal: Mol Endocrinol; 1999 Jul; 13(7):1197-206. PubMed ID: 10406469.
    Abstract:
    A member of the interferon-stimulated gene (ISG) family encodes a 17-kDa ubiquitin homolog called ISG17 that is induced in the bovine uterine endometrium by interferon-tau (IFN-tau) during early pregnancy. The bovine (b) ISG17 cDNA shares 30% identity with a tandem ubiquitin repeat and 70% identity with human (h) ISG15. The present experiments were designed to sequence the bISG17 gene, compare general structure with the hISG15 gene, and to identify transcription factors that were induced by IFN-tau in bovine endometrial (BEND) cells. The promoter of the bISG17 gene was similar to the hISG15 gene in placement of a tandem IFN-stimulatory response element (ISRE) at position -90, but unique in the presence of three additional ISREs at positions -123, -332, and -525. IFN-tau (25 nM) induced nuclear proteins in BEND cells that interacted with a tandem bISG17 ISRE in electrophoretic mobility shift assay (EMSA). IFN-regulatory factor-1 (IRF-1) bound to this ISRE based upon supershift EMSA using antiserum against IRF-1. IFN-tau activated STAT-1 (signal transducer and activator of transcription-1) and -2 by 0.5 h, and IRF-1 by 2 h in BEND cells. It is concluded that the bISG17 gene is similar to the hISG15 gene, retains an ISRE that interacts with IRF-1, and is possibly induced initially by the STATs and later by IRF-1 in response to IFN-tau during early pregnancy.
    [Abstract] [Full Text] [Related] [New Search]