These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Illusory arm movements activate cortical motor areas: a positron emission tomography study.
    Author: Naito E, Ehrsson HH, Geyer S, Zilles K, Roland PE.
    Journal: J Neurosci; 1999 Jul 15; 19(14):6134-44. PubMed ID: 10407049.
    Abstract:
    Vibration at approximately 70 Hz on the biceps tendon elicits a vivid illusory arm extension. Nobody has examined which areas in the brain are activated when subjects perceive this kinesthetic illusion. The illusion was hypothesized to originate from activations of somatosensory areas normally engaged in kinesthesia. The locations of the microstructurally defined cytoarchitectonic areas of the primary motor (4a and 4p) and primary somatosensory cortex (3a, 3b, and 1) were obtained from population maps of these areas in standard anatomical format. The regional cerebral blood flow (rCBF) was measured with (15)O-butanol and positron emission tomography in nine subjects. The left biceps tendon was vibrated at 10 Hz (LOW), at 70 or 80 Hz (ILLUSION), or at 220 or 240 Hz (HIGH). A REST condition with eyes closed was included in addition. Only the 70 and 80 Hz vibrations elicited strong illusory arm extensions in all subjects without any electromyographic activity in the arm muscles. When the rCBF of the ILLUSION condition was contrasted to the LOW and HIGH conditions, we found two clusters of activations, one in the supplementary motor area (SMA) extending into the caudal cingulate motor area (CMAc) and the other in area 4a extending into the dorsal premotor cortex (PMd) and area 4p. When LOW, HIGH, and ILLUSION were contrasted to REST, giving the main effect of vibration, areas 4p, 3b, and 1, the frontal and parietal operculum, and the insular cortex were activated. Thus, with the exception of area 4p, the effects of vibration and illusion were associated with disparate cortical areas. This indicates that the SMA, CMAc, PMd, and area 4a were activated associated with the kinesthetic illusion. Thus, against our expectations, motor areas rather than somatosensory areas seem to convey the illusion of limb movement.
    [Abstract] [Full Text] [Related] [New Search]