These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparison and assessment of electron cross sections for Monte Carlo track structure codes.
    Author: Uehara S, Nikjoo H, Goodhead DT.
    Journal: Radiat Res; 1999 Aug; 152(2):202-13. PubMed ID: 10409331.
    Abstract:
    The purpose of this study was to make an intercomparison and assessment of cross sections for electrons in water used in electron track structure codes. This study is intended to shed light on the extent to which the differences between the input data and physical and chemical assumptions influence the outcome in biophysical modeling of radiation effects. Ionization cross sections and spectra of secondary electrons were calculated by various theories. The analyses were carried out for water vapor cross sections, as these are more abundant and readily available. All suitable published experimental total ionization cross sections were fitted by an appropriate function and used for generation of electron tracks. Three sets of compiled data were used for comparison of total excitation cross sections and mean excitation energy. The tracks generated by a Monte Carlo track code, using various combinations of cross sections, were compared in terms of radial distributions of interactions and point kernels. The spectrum of secondary electrons emitted by the ionization process was found to be the factor that has the most influence on these quantities. A different set of cross sections for excitation and elastic scattering did not affect the electron track structure as much as did ionization cross sections. It is concluded that all codes, using different cross sections and in different phase, currently used for biophysical modeling exhibit close similarities for energy deposition in larger size targets while appreciable differences are observed in B-DNA-size targets. We recommend fitted functions to all available suitable experimental data for the total ionization and elastic cross sections. We conclude that most codes produce tracks in reasonable agreement with the macroscopic quantities such as total stopping power and total yield of strand breaks. However, we predict differences in frequencies of clustering in tracks from the different models.
    [Abstract] [Full Text] [Related] [New Search]