These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 32P-Postlabeling of N-(deoxyguanosin-8-yl)arylamine adducts: a comparative study of labeling efficiencies. Author: Mourato LL, Beland FA, Marques MM. Journal: Chem Res Toxicol; 1999 Jul; 12(7):661-9. PubMed ID: 10409407. Abstract: 32P-Postlabeling is an extremely powerful technique for the detection of DNA adducts. Typically, the quantitation of DNA adducts by (32)P-postlabeling is achieved by relative adduct labeling, via comparison of the radioactivity incorporated into the adducts to that associated with the normal nucleotides. This approach is based on a number of assumptions, the foremost being that normal and adducted nucleotide 3'-phosphates are converted to 3', 5'-bisphosphates with similar efficiencies. To evaluate labeling efficiencies for specific DNA adducts, we conducted a comparative study of the kinetics of phosphorylation by T(4) polynucleotide kinase using 2'-deoxyguanosine 3'-phosphate (dG3'p) and a series of N-(deoxyguanosin-8-yl)arylamine 3'-phosphate adduct standards (dG3'p-C8-Ar, Ar being 4-aminobiphenyl, 3- and 4-methylaniline, and 2,4- and 3,4-dimethylaniline). Phosphorylation of dG3'p and the dG3'p-C8-Ar adducts followed Michaelis-Menten kinetics. The apparent turnover numbers were 40-240-fold lower when labeling dG3'p-C8-Ar adducts compared to that when labeling dG3'p. The apparent specificity constant calculated for dG3'p-C8-4-aminobiphenyl (1.4 microM(-)(1) min(-)(1)) was approximately 4-fold lower than that (5. 4 microM(-)(1) min(-)(1)) found for dG3'p. Apparent specificity constants for the monoarylamine adducts were even lower (0.043-0.23 microM(-)(1) min(-)(1)) and decreased in the following order: 4-methylaniline > 3,4-dimethylaniline > 3-methylaniline > 2, 4-dimethylaniline. Similar experiments conducted with dG3'p-C8-Ar standards for 2-methylaniline and 2,3-dimethylaniline produced very poor and irreproducible labeling. These results indicate that (32)P-postlabeling of dG3'p-C8-Ar adducts is less efficient than that of dG3'p and suggest that normal nucleotides will be labeled preferentially to the arylamine adducts under kinetically controlled conditions. The data also indicate a further decrease in labeling efficiency upon substitution ortho to the amino group (e.g., 2, 4-dimethylaniline). In addition, the ATP concentrations required for optimal labeling were found to be substantially higher than those used in typical (32)P-postlabeling assays. Since the high specific activity of carrier-free [gamma-(32)P]ATP precludes increasing the ATP concentration to a significant extent, these data emphasize the need for using highly efficient adduct enrichment procedures when conducting (32)P-postlabeling analyses of DNA adducts.[Abstract] [Full Text] [Related] [New Search]