These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vitro analysis of alpha-amanitin-resistant transcription from the rRNA, procyclic acidic repetitive protein, and variant surface glycoprotein gene promoters in Trypanosoma brucei. Author: Laufer G, Schaaf G, Bollgönn S, Günzl A. Journal: Mol Cell Biol; 1999 Aug; 19(8):5466-73. PubMed ID: 10409736. Abstract: In Trypanosoma brucei, transcription resistant to the mushroom toxin alpha-amanitin is not restricted to the rRNA genes (rDNA), as in higher eukaryotes, but extends to genes encoding the major cell surface proteins variant surface glycoprotein (VSG) and procyclin or procyclic acidic repetitive protein (PARP). Here, we report the development of a homologous cell extract from procyclic T. brucei cells in which rDNA and PARP A and VSG gene promoters drive efficient, accurate, and alpha-amanitin-resistant transcription. A comparative analysis revealed that transcription from the three promoters generally required identical reaction conditions for maximal efficiency. Nevertheless, PARP promoter transcription proved to be exceptional by its high efficiency, its lag phase, a high template DNA concentration optimum, and its tolerance to increasing concentrations of Mn(2+). Mutational analysis for both the PARP and rDNA promoters showed that the proximal and distal core elements were essential for efficient transcription in vitro. Deletion of the upstream control regions (UCRs), however, had a different effect. Whereas PARP UCR deletion reduced transcription efficiency almost 10-fold, deletion of the rDNA UCR had only a minor effect on transcription efficiency.[Abstract] [Full Text] [Related] [New Search]