These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Binge drinking disturbs hepatic microcirculation after transplantation: prevention with free radical scavengers.
    Author: Zhong Z, Arteel GE, Connor HD, Schemmer P, Chou SC, Raleigh JA, Mason RP, Lemasters JJ, Thurman RG.
    Journal: J Pharmacol Exp Ther; 1999 Aug; 290(2):611-20. PubMed ID: 10411569.
    Abstract:
    Disturbances in hepatic microcirculation increase graft injury and failure; therefore, this study evaluates the effects of ethanol on microcirculation after liver transplantation. Donor rats were given one dose of ethanol (5 g/kg) by gavage 20 h before explantation, and grafts were stored in University of Wisconsin solution for 24 h before implantation. Acute ethanol treatment decreased 7-day survival of grafts from about 90 to 30%, increased transaminase release nearly 4-fold, and decreased bile production by 60%. Moreover, portal pressure increased significantly and liver surface oxygen tension decreased about 50%, indicating that ethanol disturbs hepatic microcirculation. Pimonidazole, a 2-nitroimidazole hypoxia marker, was given i.v. to recipients 30 min after implantation, and grafts were harvested 1 h later. Ethanol increased hepatic pimonidazole binding about 3-fold, indicating that ethanol led to hypoxia in fatty grafts. Ethanol also significantly increased free radicals in bile. Catechin (30 mg/kg i.v. upon reperfusion), a free radical scavenger, and Carolina Rinse solution, which contains several agents that inhibit free radical formation, minimized disturbances in microcirculation and prevented pimonidazole adduct formation significantly. These treatments also blunted increases in transaminase release and improved survival of fatty grafts. Destruction of Kupffer cells with GdCl(3) (20 mg/kg i.v. 24 h before explantation) or inhibition of formation of leukotrienes with MK-886 (50 microM in University of Wisconsin or rinse solution) also minimized hypoxia and improved survival after transplantation. Taken together, these results demonstrate that ethanol disturbs hepatic microcirculation, leading to graft hypoxia after transplantation, most likely by activating Kupffer cells and increasing free radical production.
    [Abstract] [Full Text] [Related] [New Search]