These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Influence of CA2+ on K+ efflux during regulatory volume decrease in cultured astrocytes. Author: Quesada O, Ordaz B, Morales-Mulia S, Pasantes-Morales H. Journal: J Neurosci Res; 1999 Aug 01; 57(3):350-8. PubMed ID: 10412026. Abstract: The calcium (Ca2+) dependence of potassium (K+) efflux activated by hyposmolarity in cultured cerebellar astrocytes was investigated, measuring in parallel experiments (86)Rb release and changes in cytosolic Ca2+ ([Ca2+]i). Hyposmotic (50%) medium increased [Ca2+]i from 117 to 386 nM, with contributions of extracellular Ca2+ and Ca2+ from the endoplasmic reticulum. Hyposmotic medium increased (86)Rb efflux rate from 0.015 min(-1) to a maximal of 0. 049 min(-1) and a net release of 30%. This osmosensitive efflux was inhibited by Ba(2+) (0.028 min(-1)), quinidine (0.024 min(-1)), and charybdotoxin (0.040 min(-1)), but was unaffected by TEA, 4-AP, or apamin. Removal of external Ca2+ from the hyposmotic medium increased (86)Rb efflux to a maximal rate constant of 0.056 min(-1) and a net release of 38% and caused a delay of inactivation. These changes were due to the overlaping of an efflux activated by Ca2+ removal in isosmotic medium. This isosmotic 86Rb efflux was unaffected by TEA or 4-AP, reduced by verapamil, and abolished by Ba2+, nitrendipine, and Mg2+. With the swelling-induced [Ca2+]i rise suppressed by ethyleneglycoltetraacetic acid-acetoxy-methyl ester (EGTA-AM), hyposmotic (86)Rb was 30% reduced. The Ca2+ entry blockers Cd2+, Ni2+, La3+, and Gd3+ did not affect (86)Rb efflux. A 40% decrease observed with verapamil and nitrendipine was found unrelated to Ca2+, because these agents did not affect the [Ca2+]i rise and the inhibition persisted in the absence of external Ca2+. The phospholipase C blocker U-73122 did not affect [Ca2+]i nor (86)Rb efflux. Blockers of Ca2+/calmodulin W7 and KN-93 decreased (86)Rb efflux to the same extent as EGTA-AM. Ionomycin markedly potentiated (86)Rb release in hyposmotic conditions only when [Ca2+]i was raised to about 1 microM, suggesting the implication of maxi-K+ channels at this [Ca2+]i threshold, which nonetheless, was not attained during hyposmotic swelling. It is concluded that (86)Rb efflux in cerebellar astrocytes is largely (70%) Ca2+-independent and the Ca2+-dependent fraction is sustained essentially by Ca2+ released from the endoplasmic reticulum and mediated by a mechanism involving Ca2+/calmodulin.[Abstract] [Full Text] [Related] [New Search]