These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Human small cell lung cancer NYH cells selected for resistance to the bisdioxopiperazine topoisomerase II catalytic inhibitor ICRF-187 demonstrate a functional R162Q mutation in the Walker A consensus ATP binding domain of the alpha isoform. Author: Wessel I, Jensen LH, Jensen PB, Falck J, Rose A, Roerth M, Nitiss JL, Sehested M. Journal: Cancer Res; 1999 Jul 15; 59(14):3442-50. PubMed ID: 10416608. Abstract: Bisdioxopiperazine drugs such as ICRF-187 are catalytic inhibitors of DNA topoisomerase II, with at least two effects on the enzyme: namely, locking it in a closed-clamp form and inhibiting its ATPase activity. This is in contrast to topoisomerase II poisons as etoposide and amsacrine (m-AMSA), which act by stabilizing enzyme-DNA-drug complexes at a stage in which the DNA gate strand is cleaved and the protein is covalently attached to DNA. Human small cell lung cancer NYH cells selected for resistance to ICRF-187 (NYH/187) showed a 25% increase in topoisomerase IIalpha level and no change in expression of the beta isoform. Sequencing of the entire topoisomerase IIalpha cDNA from NYH/187 cells demonstrated a homozygous G-->A point mutation at nucleotide 485, leading to a R162Q conversion in the Walker A consensus ATP binding site (residues 161-165 in the alpha isoform), this being the first drug-selected mutation described at this site. Western blotting after incubation with ICRF-187 showed no depletion of the alpha isoform in NYH/187 cells in contrast to wild-type (wt) cells, whereas equal depletion of the beta isoform was observed in the two sublines. Alkaline elution assay demonstrated a lack of inhibition of etoposide-induced DNA single-stranded breaks in NYH/187 cells, whereas this inhibition was readily apparent in NYH cells. Site-directed mutagenesis in human topoisomerase IIalpha introduced into a yeast Saccharomyces cerevisiae strain with a temperature-conditional yeast TOP2 mutant demonstrated that R162Q conferred resistance to the bisdioxopiperazines ICRF-187 and -193 but not to etoposide or m-AMSA. Both etoposide and m-AMSA induced more DNA cleavage with purified R162Q enzyme than with the wt. The R162Q enzyme has a 20-25% decreased catalytic capacity compared to the wt and was almost inactive at <0.25 mM ATP compared to the wt. Kinetoplast DNA decatenation by the R162Q enzyme at 1 mM ATP was not resistant to ICRF-187 compared to wt, whereas it was clearly less sensitive than wt to ICRF-187 at low ATP concentrations. This suggests that it is a shift in the equilibrium to an open-clamp state in the enzyme's catalytic cycle caused by a decreased ATP binding by the mutated enzyme that is responsible for bisdioxopiperazine resistance.[Abstract] [Full Text] [Related] [New Search]