These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mutations in the leucine zipper motif and sterol-sensing domain inactivate the Niemann-Pick C1 glycoprotein. Author: Watari H, Blanchette-Mackie EJ, Dwyer NK, Watari M, Neufeld EB, Patel S, Pentchev PG, Strauss JF. Journal: J Biol Chem; 1999 Jul 30; 274(31):21861-6. PubMed ID: 10419504. Abstract: Niemann-Pick type C (NPC) disease, characterized by accumulation of low density lipoprotein-derived free cholesterol in lysosomes, is caused by mutations in the NPC1 gene. We examined the ability of wild-type NPC1 and NPC1 mutants to correct the NPC sterol trafficking defect and their subcellular localization in CT60 cells. Cells transfected with wild-type NPC1 expressed 170- and 190-kDa proteins. Tunicamycin treatment resulted in a 140-kDa protein, the deduced size of NPC1, suggesting that NPC1 is N-glycosylated. Mutation of all four asparagines in potential N-terminal N-glycosylation sites to glutamines resulted in a 20-kDa reduction of the expressed protein. Proteins with a single N-glycosylation site mutation localized to late endosome/lysosomal compartments, as did wild-type NPC1, and each corrected the cholesterol trafficking defect. However, mutation of all four potential N-glycosylation sites reduced ability to correct the NPC phenotype commensurate with reduced expression of the protein. Mutations in the putative sterol-sensing domain resulted in inactive proteins targeted to lysosomal membranes encircling cholesterol-laden cores. N-terminal leucine zipper motif mutants could not correct the NPC defect, although they accumulated in lysosomal membranes. We conclude that NPC1 is a glycoprotein that must have an intact sterol-sensing domain and leucine zipper motif for cholesterol-mobilizing activity.[Abstract] [Full Text] [Related] [New Search]