These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: p85/p110-type phosphatidylinositol kinase phosphorylates not only the D-3, but also the D-4 position of the inositol ring.
    Author: Funaki M, Katagiri H, Kanda A, Anai M, Nawano M, Ogihara T, Inukai K, Fukushima Y, Ono H, Yazaki Y, Kikuchi M, Oka Y, Asano T.
    Journal: J Biol Chem; 1999 Jul 30; 274(31):22019-24. PubMed ID: 10419527.
    Abstract:
    Activation of p85/p110-type phosphatidylinositol (PI) kinase has been implicated in various cellular activities. This PI kinase phosphorylates the D-4 position with a similar or higher efficiency than the D-3 position when trichloroacetic acid-treated cell membrane is used as a substrate, although it phosphorylates almost exclusively the D-3 position of the inositol ring in phosphoinositides when purified PI is used as a substrate. Furthermore, the lipid kinase activities of p110 for both the D-3 and D-4 positions were completely abolished by introducing kinase-dead point mutations in their lipid kinase domains (DeltaKinalpha and DeltaKinbeta, respectively). In addition, both PI 3- and PI 4-kinase activities of p110alpha and p110beta immunoprecipitates were similarly inhibited by either wortmannin or LY294002, specific inhibitors of p110. Insulin induced phosphorylation of not only the D-3 position, but also the D-4 position. Indeed, overexpression of p110 in Sf9 or 3T3-L1 cells induced marked phosphorylation of the D-4 position to a level comparable to or much greater than that of D-3, whereas inhibition of endogenous p85/p110-type PI kinase via overexpression of dominant-negative p85alpha (Deltap85alpha) in 3T3-L1 adipocytes abolished insulin-induced synthesis of both. Thus, p85/p110-type PI kinase phosphorylates the D-4 position of phosphoinositides more efficiently than the D-3 position in vivo, and each of the D-3- or D-4-phosphorylated phosphoinositides may transmit signals downstream.
    [Abstract] [Full Text] [Related] [New Search]