These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Context-independent dynamic information for the perception of coarticulated vowels. Author: Jenkins JJ, Strange W, Trent SA. Journal: J Acoust Soc Am; 1999 Jul; 106(1):438-48. PubMed ID: 10420634. Abstract: Most investigators agree that the acoustic information for American English vowels includes dynamic (time-varying) parameters as well as static "target" information contained in a single cross section of the syllable. Using the silent-center (SC) paradigm, the present experiment examined the case in which the initial and final portions of stop consonant-vowel-stop consonant (CVC) syllables containing the same vowel but different consonants were recombined into mixed-consonant SC syllables and presented to listeners for vowel identification. Ten vowels were spoken in six different syllables, /b Vb, bVd, bVt, dVb, dVd, dVt/, embedded in a carrier sentence. Initial and final transitional portions of these syllables were cross-matched in: (1) silent-center syllables with original syllable durations (silences) preserved (mixed-consonant SC condition) and (2) mixed-consonant SC syllables with syllable duration equated across the ten vowels (fixed duration mixed-consonant SC condition). Vowel-identification accuracy in these two mixed consonant SC conditions was compared with performance on the original SC and fixed duration SC stimuli, and in initial and final control conditions in which initial and final transitional portions were each presented alone. Vowels were identified highly accurately in both mixed-consonant SC and original syllable SC conditions (only 7%-8% overall errors). Neutralizing duration information led to small, but significant, increases in identification errors in both mixed-consonant and original fixed-duration SC conditions (14%-15% errors), but performance was still much more accurate than for initial and finals control conditions (35% and 52% errors, respectively). Acoustical analysis confirmed that direction and extent of formant change from initial to final portions of mixed-consonant stimuli differed from that of original syllables, arguing against a target + offglide explanation of the perceptual results. Results do support the hypothesis that temporal trajectories specifying "style of movement" provide information for the differentiation of American English tense and lax vowels, and that this information is invariant over the place of articulation and voicing of the surrounding stop consonants.[Abstract] [Full Text] [Related] [New Search]