These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of type-specific domains within glycoprotein G of herpes simplex virus type 2 (HSV-2) recognized by the majority of patients infected with HSV-2, but not by those infected with HSV-1. Author: Grabowska A, Jameson C, Laing P, Jeansson S, Sj Gren-Jansson E, Taylor J, Cunningham A, Irving WL. Journal: J Gen Virol; 1999 Jul; 80 ( Pt 7)():1789-1798. PubMed ID: 10423148. Abstract: A combination of phage peptide display library mapping and pepscanning, with both murine monoclonal antibodies and a panel of well-characterized human sera, have been used in order to define type-specific epitopes of glycoprotein G of herpes simplex virus type 2 (HSV-2) (gG2). Both techniques revealed an immunodominant region of gG2, centred around amino acids 525-587 of the uncleaved gG2 molecule. A soluble peptide, equivalent to amino acids 551-570, when used as antigen in an ELISA format was recognized by three out of five murine MAbs and by 20/26 (77%) Western blot anti-HSV-2-positive human sera, but by only 1/63 Western blot anti-HSV-2-negative sera (specificity, 98%). The sensitivity of detection of human anti-HSV-2 antibodies was increased to 90% using a peptide derived from this region, presented on a nitrocellulose membrane. This highly antigenic and type-specific domain of gG2 is located at the junction between the 'unique' region of gG2 and its C-terminal end, which has approximately 50% identity with gG1. A second antigenic region of gG2, amino acids 351-427, which lies within the 'unique' part of gG2, was also identified by both techniques employed in this study and is recognized by a proportion of anti-HSV-2-positive sera. These findings demonstrate the feasibility of developing a peptide-based type-specific assay for the detection of anti-HSV-2 antibody in human sera based on type-specific epitopes of gG2 and have implications for the understanding of the three-dimensional topography of gG2.[Abstract] [Full Text] [Related] [New Search]