These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Marked antiangiogenic and antitumor efficacy of AG3340 in chemoresistant human non-small cell lung cancer tumors: single agent and combination chemotherapy studies. Author: Shalinsky DR, Brekken J, Zou H, Bloom LA, McDermott CD, Zook S, Varki NM, Appelt K. Journal: Clin Cancer Res; 1999 Jul; 5(7):1905-17. PubMed ID: 10430098. Abstract: Effective therapy is needed to improve the survival of patients with advanced lung cancers. We studied the effects of a selective metalloprotease inhibitor, AG3340, on chemoresistant human non-small cell lung cancer tumors (line MV522) in vivo. Mice bearing s.c. tumors were given twice-daily oral doses of AG3340. As a single agent, AG3340 inhibited angiogenesis (up to 77%) and tumor growth (up to 65%) in a dose-dependent manner at well-tolerated daily doses up to 400 mg/kg/day and induced significant tumor necrosis. In contrast, tumors were relatively insensitive to carboplatin with approximately 25% growth inhibition observed at a maximum tolerated dose of approximately 30 mg/kg/week (given i.p., twice weekly). Carboplatin inhibited tumor growth markedly only at toxic doses, demonstrating a superior therapeutic index of AG3340 to carboplatin in this tumor model. A suboptimal dose of AG3340, when used in combination with an ineffective maximum tolerated dose of carboplatin, resulted in greater tumor growth inhibitions than those produced by either agent alone. Similarly, growth inhibition was enhanced when AG3340 was used in combination with paclitaxel. Cotreatment with carboplatin did not alter AG3340 plasma concentrations achieved acutely after oral dosing. These data demonstrate an antiangiogenic and antitumor effect of AG3340 when used as a single agent and enhanced growth inhibitions when AG3340 is used in combination with cytotoxic agents. These data suggest that treatment with this novel matrix metalloprotease inhibitor may be beneficial in advanced lung cancers and other chemoresistant malignancies.[Abstract] [Full Text] [Related] [New Search]