These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Histaminergic and catecholaminergic interactions in the central regulation of vasopressin and oxytocin secretion. Author: Knigge U, Willems E, Kjaer A, Jørgensen H, Warberg J. Journal: Endocrinology; 1999 Aug; 140(8):3713-9. PubMed ID: 10433231. Abstract: Activation of histaminergic and noradrenergic/adrenergic neurons in the brain stimulates the release of the neurohypophysial hormones arginine vasopressin (AVP) and oxytocin (OT) and are involved the mediation of the hormone responses to physiological stimuli such as dehydration and suckling. We therefore investigated whether the two neuronal systems interact in their regulation of AVP and OT secretion in conscious male rats. When administered intracerebroventricularly (i.c.v.), histamine (HA) as well as the H1 receptor agonist 2-thiazolylethylamine or the H2 receptor agonist 4-methylHA stimulated AVP and OT secretion. Prior i.c.v. infusion of antagonists specific to alpha or beta adrenergic receptors or their subtypes did not significantly affect the hormone response to HA or the histaminergic agonists. Infused i.c.v. norepinephrine (NE) or epinephrine (E) increased AVP and OT secretion. Prior i.c.v. infusion of the H1 receptor antagonist mepyramine or the H2 receptor antagonist cimetidine significantly inhibited the AVP and OT responses to NE and the AVP response to E, whereas only cimetidine inhibited the OT response to E significantly. Systemic pretreatment with imetit, which by activation of presynaptic H3 receptors inhibits neuronal synthesis and release of HA, decreased the AVP and OT responses to NE and E significantly. In the doses used, HA and E had no significant effect on mean arterial blood pressure. NE increased mean arterial blood pressure 10% at 1 and 2.5 min, whereafter the blood pressure returned to basal level within 10 min. The results indicate that noradrenergic and adrenergic neurons stimulate AVP and OT secretion via an involvement of histaminergic neurons, which may occur at magnocellular neurons in the supraoptic and paraventricular nuclei of the hypothalamus. The stimulatory effect of the amines on neurohypophysial hormone secretion seems to be independent of a central action on blood pressure. In contrast, a functionally intact noradrenergic and adrenergic neuronal system seems not to be a prerequisite for a HA-induced release of AVP and OT. The present findings further substantiate the role of histaminergic neurons in the central regulation of neurohypophysial hormone secretion.[Abstract] [Full Text] [Related] [New Search]