These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Microsecond motions of the lipids associated with trypsinized Na,K-ATPase membranes. Progressive saturation spin-label electron spin resonance studies. Author: Arora A, Esmann M, Marsh D. Journal: Biochemistry; 1999 Aug 03; 38(31):10084-91. PubMed ID: 10433716. Abstract: The microsecond motions of spin-labeled lipids associated with the Na(+)/K(+)-transporting ATP hydrolase (Na,K-ATPase) in native and tryptically shaved membranes from Squalus acanthias have been studied by progressive saturation electron spin resonance (ESR). This includes both the segmental mobility of the lipid chains and the exchange dynamics of the lipids interacting directly with the protein. The lipids at the protein interface display a temperature-dependent chain mobility on the submicrosecond time scale. Exchange of these lipids with those in the bulk bilayer regions of the membrane takes place on the time scale of the nitroxide spin-lattice relaxation, i.e., in the microsecond regime. The off-rates for exchange directly reflect the specificity of ionized fatty acids relative to protonated fatty acids for interaction with the Na,K-ATPase. These essential features of the lipid dynamics at the intramembranous protein surface, namely, a temperature-dependent exchange on the microsecond time scale that reflects the lipid selectivity, are preserved on removing the extramembranous parts of the Na,K-ATPase by extensive trypsinization.[Abstract] [Full Text] [Related] [New Search]