These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functional domain analysis of the yeast ABC transporter Ycf1p by site-directed mutagenesis. Author: Falcón-Pérez JM, Mazón MJ, Molano J, Eraso P. Journal: J Biol Chem; 1999 Aug 13; 274(33):23584-90. PubMed ID: 10438540. Abstract: The yeast cadmium factor (Ycf1p) is a vacuolar protein involved in resistance to Cd(2+) and to exogenous glutathione S-conjugate precursors in yeast. It belongs to the superfamily of ATP binding cassette transporters, which includes the human cystic fibrosis transmembrane conductance regulator and the multidrug resistance-associated protein. To examine the functional significance of conserved amino acid residues in Ycf1p, we performed an extensive mutational analysis. Twenty-two single amino acid substitutions or deletions were generated by site-directed mutagenesis in the nucleotide binding domains, the proposed regulatory domain, and the fourth cytoplasmic loop. Mutants were analyzed phenotypically by measuring their ability to grow in the presence of Cd(2+). Expression and subcellular localization of the mutant proteins were examined by immunodetection in vacuolar membranes. For functional characterization of the Ycf1p variants, the kinetic parameters of glutathione S-conjugated leukotriene C(4) transport were measured. Our analysis shows that residues Ile(711), Leu(712), Phe(713), Glu(927), and Gly(1413) are essential for Ycf1p expression. Five other amino acids, Gly(663), Gly(756), Asp(777), Gly(1306), and Gly(1311), are critical for Ycf1p function, and two residues, Glu(709) and Asp(821), are unnecessary for Ycf1p biogenesis and function. We also identify several regulatory domain mutants in which Cd(2+) tolerance of the mutant strain and transport activity of the protein are dissociated.[Abstract] [Full Text] [Related] [New Search]