These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fast lymphoid reconstitution after vascularized bone marrow transplantation in lethally irradiated rats.
    Author: Janczewska S, Ziolkowska A, Durlik M, Olszewski WL, Lukomska B.
    Journal: Transplantation; 1999 Jul 27; 68(2):201-9. PubMed ID: 10440388.
    Abstract:
    BACKGROUND: Bone marrow (BM) transplantation for treatment of hematological and solid malignancies is routinely carried out in conjunction with radio- and chemotherapy. Many patients achieve complete remission of the malignant process; however, their lymphohematopoietic recovery remains in most cases incomplete. This is probably due to the functional changes in the recipient BM stromal cells subsequent to myeloablative therapy. Transplantation of BM hematopoietic cells in a spatial relationship with stromal cells would give an insight into the kinetics of hematological repopulation of the recipient. The aim of this study was to investigate the lymphopoietic reconstitution of irradiated rats after vascularized bone marrow transplantation (VBMT) in comparison with i.v. bone marrow cell (BMC) infusion. METHODS: Lewis rats were totally irradiated with 8Gy and repopulated with syngeneic BMC introduced i.v. or in orthotopic hind limb graft. Ten days after irradiation and BMC graft BM, peripheral blood (PB) and mesenteric lymph nodes (MLN) were collected. The yield and the phenotype of cells were analyzed. RESULTS: VBMT brings much higher cell repopulation of BM cavities of lethally irradiated rats than BMC infusion. Orthotopic hind limb graft promotes also rapid lymphocyte replenishment of PB and MLN of lethally irradiated syngeneic recipients. The population rate of BMC, PB lymphocytes, and MLN lymphocytes was higher after VBMT than BMC injection in suspension. The percentage of T and B lymphocytes in PB and MLN on day 10 after VBMT was comparable with control values. Reconstituted PB lymphocytes showed two subsets of CD4+ cells: "bright" and "dull." All CD4+ cells in PB lymphocytes of i.v. BMC infused recipients expressed low level of these molecules ("dull" subset). CONCLUSIONS: The results of our studies indicate that the presence of stromal cells in their close relationship with stem cells is essential for the fast lyphohematopoietic repopulation of irradiated recipients. The population of CD4+dull cells may represent immature cells. These cells were not found in MLN of VBMT rats. All MLN CD4+ cells represented the "bright" subset, what suggests that the process of cell maturation may occur in the lymphoid organs.
    [Abstract] [Full Text] [Related] [New Search]