These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The production of monoclonal antibody in growth-arrested hybridomas cultivated in suspension and immobilized modes. Author: Seifert DB, Phillips JA. Journal: Biotechnol Prog; 1999; 15(4):655-66. PubMed ID: 10441357. Abstract: The effects of the microenvironment and the nature of the limiting nutrient on culture viability and overall MAb productivity were explored using a hybridoma cell line which characteristically produces MAb in the stationary phase. A direct comparison was made of the changes in the metabolic profiles of suspension and PEG-alginate immobilized (0.8 mm beads) batch cultures upon entry into the stationary phase. The shifts in glucose, glutamine, and amino acid metabolism upon entry into the stationary phase were similar for both microenvironments. While the utilization of most nutrients in the stationary phase decreased to below 20% of that in the growth phase, antibody production was not dramatically affected. The immobilized culture did exhibit a 1.5-fold increase in the specific antibody rate over the suspension culture in both the growth and stationary phases. The role of limiting nutrient on MAb production and cell viability was assessed by artificially depleting a specific nutrient to 1% of its control concentration. An exponentially growing population of HB121 cells exposed to these various depletions responded with dramatically different viability profiles and MAb production kinetics. All depletions resulted in growth-arrested cultures and nongrowth-associated MAb production. Depletions in energy sources (glucose, glutamine) or essential amino acids (isoleucine) resulted in either poor viability or low antibody productivity. A phosphate or serum depletion maintained antibody production over at least a six day period with each resulting in a 3-fold higher antibody production rate than in growing batch cultures. These results were translated to a high-density perfusion culture of immobilized cells in the growth-arrested state with continued MAb expression for 20 days at a specific rate equal to that observed in the phosphate- and serum-depleted batch cultures.[Abstract] [Full Text] [Related] [New Search]