These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Persistent Fos protein expression after orofacial deep or cutaneous tissue inflammation in rats: implications for persistent orofacial pain. Author: Zhou Q, Imbe H, Dubner R, Ren K. Journal: J Comp Neurol; 1999 Sep 20; 412(2):276-91. PubMed ID: 10441756. Abstract: This study was designed to systematically examine the effects of persistent orofacial tissue injury on prolonged neuronal activation in the trigeminal nociceptive pathways by directly comparing the effects of orofacial deep vs. cutaneous tissue inflammation on brainstem Fos protein expression, a marker of neuronal activation. Complete Freund's adjuvant (CFA) was injected unilaterally into the rat temporomandibular joint (TMJ) or perioral (PO) skin to produce inflammation in deep or cutaneous tissues, respectively. Rats were perfused 2 hours, 24 hours, 3 days, or 10 days following CFA injection. The TMJ and PO inflammation-induced Fos expression paralleled the intensity and course of inflammation over the 10-day observation period, suggesting that the increase in intensities and persistence of Fos protein expression may be associated with a maintained increase in peripheral input. Compared to PO CFA injection, the injection of CFA into the TMJ produced a significantly stronger inflammation associated with a greater Fos expression. In TMJ- but not in PO-inflamed rats, Fos-like immunoreactivity (LI) spread from superficial to deep upper cervical dorsal horn as the inflammation persisted and there was a dominant ipsilateral Fos-labeling in the paratrigeminal nucleus. Common to TMJ and PO inflammation, Fos-LI was induced in the trigeminal subnuclei interpolaris and caudalis, C1-2 dorsal horn, and other medullary nuclei. Substantial bilateral Fos-LI was found in the interpolaris-caudalis trigeminal transition zone. Further analysis revealed that Fos-LI in the ventral transition zone was equivalent bilaterally, whereas Fos-LI in the dorsal transition zone was predominantly ipsilateral to the inflammation. The differential induction of Fos expression suggests that an increase in TMJ C-fiber input after inflammation and robust central neuronal hyperexcitability contribute to persistent pain associated with temporomandibular disorders.[Abstract] [Full Text] [Related] [New Search]