These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Positioning proton-donating residues to the Schiff-base accelerates the M-decay of pharaonis phoborhodopsin expressed in Escherichia coli. Author: Iwamoto M, Shimono K, Sumi M, Kamo N. Journal: Biophys Chem; 1999 Jun 28; 79(3):187-92. PubMed ID: 10443011. Abstract: Phoborhodopsin (also called sensory rhodopsin II, sR-II) is a receptor for the negative phototaxis of Halobacterium salinarum (pR), and pharaonis phoborhodopsin (ppR) is the corresponding receptor of Natronobacterium pharaonis. pR and ppR are retinoid proteins and have a photocycle similar to that of bacteriorhodopsin (bR). A major difference between the photocycle of the ion pump bR and the sensor pR or ppR is found in their turnover rates which are much faster for bR. A reason for this difference might be found in the lack of a proton-donating residue to the Schiff base which is formed between the lysine of the opsin and retinal. To reconstruct a bR-like photochemical behavior, we expressed ppR mutants in Escherichia coli in which proton-donating groups have been reintroduced into the cytoplasmic proton channel. In measurement of the photocycle it could be shown that the F86D mutant of ppR (Phe86 was substituted by Asp) showed a faster decay of M-intermediate than the wild-type, which was even accelerated in the F86D/L40T double mutant.[Abstract] [Full Text] [Related] [New Search]