These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The ion coupling and organic substrate specificities of osmoregulatory transporter ProP in Escherichia coli. Author: MacMillan SV, Alexander DA, Culham DE, Kunte HJ, Marshall EV, Rochon D, Wood JM. Journal: Biochim Biophys Acta; 1999 Aug 20; 1420(1-2):30-44. PubMed ID: 10446288. Abstract: Transporter ProP of Escherichia coli, a member of the major facilitator superfamily, mediates osmoprotective proline or glycine betaine accumulation by bacteria exposed to high osmolality environments. Morpholinopropane sulfonic acid, a common constituent of microbiological media, accumulates in osmoadapting E. coli cells but it is not osmoprotective and it did not influence proP transcription or ProP activity. The apparent K(m) for proline uptake via ProP increased with decreasing pH in the range 7.5-4. ProP-dependent proline uptake by de-energized bacteria was associated with alkalinization of the external medium. Thus ProP mediates cotransport of H(+) and zwitterionic proline and a transporter functional group with a pK(a) of 5-6 is implicated in catalysis. Exogenous proline or glycine betaine elicits K(+) release from osmoadapting E. coli cells and ProP activity is stimulated by exogenous K(+). However, uptake of proline or glycine betaine stimulated K(+) efflux from K(+)-loaded bacteria which expressed either ProP or alternative, osmoregulatory transporter ProU. This indicated that ProP was unlikely to mediate K(+) efflux. Zwitterions ectoine, pipecolate, proline betaine, N,N-dimethylglycine, carnitine and 1-carboxymethylpyridinium were identified as alternative ProP substrates. Choline, a cation and a structural analogue of glycine betaine, was a low affinity inhibitor but not a substrate of ProP.[Abstract] [Full Text] [Related] [New Search]