These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The functions of the flavin contact residues, alphaArg249 and betaTyr16, in human electron transfer flavoprotein. Author: Dwyer TM, Zhang L, Muller M, Marrugo F, Frerman F. Journal: Biochim Biophys Acta; 1999 Aug 17; 1433(1-2):139-52. PubMed ID: 10446367. Abstract: Arg249 in the large (alpha) subunit of human electron transfer flavoprotein (ETF) heterodimer is absolutely conserved throughout the ETF superfamily. The guanidinium group of alphaArg249 is within van der Waals contact distance and lies perpendicular to the xylene subnucleus of the flavin ring, near the region proposed to be involved in electron transfer with medium chain acyl-CoA dehydrogenase. The backbone amide hydrogen of alphaArg249 is within hydrogen bonding distance of the carbonyl oxygen at the flavin C(2). alphaArg249 may modulate the potentials of the two flavin redox couples by hydrogen bonding the carbonyl oxygen at C(2) and by providing delocalized positive charge to neutralize the anionic semiquinone and anionic hydroquinone of the flavin. The potentials of the oxidized/semiquinone and semiquinone/hydroquinone couples decrease in an alphaR249K mutant ETF generated by site directed mutagenesis and expression in Escherichia coli, without major alterations of the flavin environment as judged by spectral criteria. The steady state turnover of medium chain acyl-CoA dehydrogenase and glutaryl-CoA dehydrogenase decrease greater than 90% as a result of the alphaR249Ks mutation. In contrast, the steady state turnover of short chain acyl-CoA dehydrogenase was decreased about 38% when alphaR249K ETF was the electron acceptor. Stopped flow absorbance measurements of the oxidation of reduced medium chain acyl-CoA dehydrogenase/octenoyl-CoA product complex by wild type human ETF at 3 degrees C are biphasic (t(1/2)=12 ms and 122 ms). The rate of oxidation of this reduced binary complex of the dehydrogenase by the alphaR249K mutant ETF is extremely slow and could not be reasonably estimated. alphaAsp253 is proposed to function with alphaArg249 in the electron transfer pathway from medium chain acyl-CoA dehydrogenase to ETF. The steady state kinetic constants of the dehydrogenase were not altered when ETF containing an alphaD253A mutant was the substrate. However, t(1/2) of the rapid phase of oxidation of the reduced medium chain acyl-CoA dehydrogenase/octenoyl-CoA charge transfer complex almost doubled. betaTyr16 lies on a loop near the C(8) methyl group, and is also near the proposed site for interflavin electron transfer with medium chain acyl-CoA dehydrogenase. The tyrosine residue makes van der Waals contact with the C(8) methyl group of the flavin in human ETF and Paracoccus denitrificans ETF (as betaTyr13) and lies at a 30 degrees C angle with the plane of the flavin. Human betaTyr16 was substituted with leucine and alanine residues to investigate the role of this residue in the modulation of the flavin redox potentials and in electron transfer to ETF. In betaY16L ETF, the potentials of the flavin were slightly reduced, and steady state kinetic constants were modestly altered. Substitution of an alanine residue for betaTyr16 yields an ETF with potentials very similar to the wild type but with steady state kinetic properties similar to betaY16L ETF. It is unlikely that the beta methyl group of the alanine residue interacts with the flavin C(8) methyl. Neither substitution of betaTyr16 had a large effect on the fast phase of ETF reduction by medium chain acyl-CoA dehydrogenase.[Abstract] [Full Text] [Related] [New Search]