These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Transformation blocks differentiation-induced inhibition of serum response factor interactions with serum response elements. Author: Ding W, Witte MM, Scott RE. Journal: Cancer Res; 1999 Aug 01; 59(15):3795-802. PubMed ID: 10446998. Abstract: The differentiation of nontransformed 3T3T mesenchymal stem cells is a multistep process that is associated with the progressive repression of mitogenic responsiveness to serum growth factors that ultimately results in expression of the terminally differentiated adipocyte phenotype. The repression of serum-induced mitogenesis by differentiation correlates with repression of the serum-inducible transcription of junB and c-fos. In contrast, the differentiation of neoplastically transformed cells does not repress mitogenic responsiveness or junB or c-fos inducibility. Because the junB and c-fos promoters both contain serum response elements (SREs), the current studies tested the possibility that differentiation might repress the ability of serum response factor (SRF) to bind to the SRE in normal cells but not in transformed cells. We now report that differentiation represses SRE serum inducibility using nontransformed cells transiently transfected with pjunB SRE thymidine kinase/chloroamphenicol acetyltransferase (SREtk/CAT) or pc-fos SREtk/CAT containing an intact SRF-binding domain. Adipocyte differentiation of nontransformed cells also markedly represses the ability of SRF to bind to the junB SRE, the c-fos SRE, and other SREs, as determined by mobility shift and gel supershift assays, without affecting the DNA binding characteristics of the nuclear protein SP-1. By comparison, the ability of SRF to bind SRE is not repressed by the differentiation of SV40 large T antigen-transformed 3T3T cells. The results further establish that adipocyte differentiation blocks the nuclear localization of SRF, thus preventing its interaction with SREs in nontransformed cells but not in transformed cells.[Abstract] [Full Text] [Related] [New Search]