These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Unsaturated long-chain N-acyl-vanillyl-amides (N-AVAMs): vanilloid receptor ligands that inhibit anandamide-facilitated transport and bind to CB1 cannabinoid receptors. Author: Melck D, Bisogno T, De Petrocellis L, Chuang H, Julius D, Bifulco M, Di Marzo V. Journal: Biochem Biophys Res Commun; 1999 Aug 19; 262(1):275-84. PubMed ID: 10448105. Abstract: We investigated the effect of changing the length and degree of unsaturation of the fatty acyl chain of N-(3-methoxy-4-hydroxy)-benzyl-cis-9-octadecenoamide (olvanil), a ligand of vanilloid receptors, on its capability to: (i) inhibit anandamide-facilitated transport into cells and enzymatic hydrolysis, (ii) bind to CB1 and CB2 cannabinoid receptors, and (iii) activate the VR1 vanilloid receptor. Potent inhibition of [(14)C]anandamide accumulation into cells was achieved with C20:4 n-6, C18:3 n-6 and n-3, and C18:2 n-6 N-acyl-vanillyl-amides (N-AVAMs). The saturated analogues and Delta(9)-trans-olvanil were inactive. Activity in CB1 binding assays increased when increasing the number of cis-double bonds in a n-6 fatty acyl chain and, in saturated N-AVAMs, was not greatly sensitive to decreasing the chain length. The C20:4 n-6 analogue (arvanil) was a potent inhibitor of anandamide accumulation (IC(50) = 3.6 microM) and was 4-fold more potent than anandamide on CB1 receptors (Ki = 0.25-0.52 microM), whereas the C18:3 n-3 N-AVAM was more selective than arvanil for the uptake (IC(50) = 8.0 microM) vs CB1 receptors (Ki = 3.4 microM). None of the compounds efficiently inhibited [(14)C]anandamide hydrolysis or bound to CB2 receptors. All N-AVAMs activated the cation currents coupled to VR1 receptors overexpressed in Xenopus oocytes. In a simple, intact cell model of both vanilloid- and anandamide-like activity, i.e., the inhibition of human breast cancer cell (HBCC) proliferation, arvanil was shown to behave as a "hybrid" activator of cannabinoid and vanilloid receptors.[Abstract] [Full Text] [Related] [New Search]