These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Calcium signalling and regulation in olfactory neurons.
    Author: Menini A.
    Journal: Curr Opin Neurobiol; 1999 Aug; 9(4):419-26. PubMed ID: 10448159.
    Abstract:
    The odorant-induced Ca(2+) increase inside the cilia of vertebrate olfactory sensory neurons controls both excitation and adaptation. The increase in the internal concentration of Ca(2+) in the cilia has recently been visualized directly and has been attributed to Ca(2+) entry through cAMP-gated channels. These recent results have made it possible to further characterize Ca(2+)'s activities in olfactory neurons. Ca(2+) exerts its excitatory role by directly activating Cl(-) channels. Given the unusually high concentration of ciliary Cl(-), Ca(2+)'s activation of Cl(-) channels causes an efflux of Cl(-) from the cilia, contributing high-gain and low-noise amplification to the olfactory neuron depolarization. Moreover, in combination with calmodulin, Ca(2+) mediates odorant adaptation by desensitizing cAMP-gated channels. The restoration of the Ca(2+) concentration to basal levels occurs via a Na(+)/Ca(2+) exchanger, which extrudes Ca(2+) from the olfactory cilia.
    [Abstract] [Full Text] [Related] [New Search]