These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Calcium channels involved in K+- and veratridine-induced increase of cytosolic calcium concentration in human cerebral cortical synaptosomes.
    Author: Meder W, Fink K, Zentner J, Göthert M.
    Journal: J Pharmacol Exp Ther; 1999 Sep; 290(3):1126-31. PubMed ID: 10454486.
    Abstract:
    Human cerebral cortical synaptosomes were used to study voltage-dependent Ca(2+) channels mediating calcium influx in human axon terminals. Synaptosomes were depolarized by elevation of the extracellular K(+) concentration by 30 mM or by the addition of veratridine (10 microM). Increase in cytosolic concentration of calcium [Ca(2+)](i) induced by either stimulus was abolished in the absence of extracellular Ca(2+) ions. omega-Agatoxin IVA inhibited the K(+)-induced [Ca(2+)](i) increase concentration-dependently (IC(50): 113 nM). omega-Conotoxin GVIA (0.1 microM) inhibited K(+)-induced [Ca(2+)](i) increase by 20%. omega-Conotoxin MVIIC (0.2 microM) caused an inhibition by 85%. Nifedipine (1 microM) had no effect on K(+)-induced [Ca(2+)](i) increase. Veratridine-induced increase in [Ca(2+)](i) was inhibited by omega-conotoxin GVIA (0.1 microM) and omega-Agatoxin IVA (0.2 microM; by about 25 and 45%, respectively). Nifedipine inhibited the veratridine-evoked [Ca(2+)](i) increase concentration-dependently (IC(50): 4.9 nM); Bay K 8644 (3 microM) shifted the nifedipine concentration-response curve to the right. Mibefradil (10 microM) abolished the increase in [Ca(2+)](i) evoked by K(+) and reduced the increase evoked by veratridine by almost 90%. KB-R7943 (3 microM) an inhibitor of the Na(+)/Ca(2+) exchanger NCX1, decreased the increase in [Ca(2+)](i) evoked by veratridine by approximately 20%. It is concluded that the increase in [Ca(2+)](i) after K(+) depolarization caused by Ca(2+) influx predominantly via P/Q-type Ca(2+) channels and after veratridine depolarization via N- and P/Q-type, but also by L-type Ca(2+) channels. The toxin- and nifedipine-resistant fraction of the veratridine response may result both from influx via R-type Ca(2+) channels and by Ca(2+) inward transport via Na(+)/Ca(2+) exchanger.
    [Abstract] [Full Text] [Related] [New Search]