These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vitro analysis of the glucose-transport system in GLUT4-null skeletal muscle.
    Author: Ryder JW, Kawano Y, Chibalin AV, Rincón J, Tsao TS, Stenbit AE, Combatsiaris T, Yang J, Holman GD, Charron MJ, Zierath JR.
    Journal: Biochem J; 1999 Sep 01; 342 ( Pt 2)(Pt 2):321-8. PubMed ID: 10455018.
    Abstract:
    We have characterized the glucose-transport system in soleus muscle from female GLUT4-null mice to determine whether GLUT1, 3 or 5 account for insulin-stimulated glucose-transport activity. Insulin increased 2-deoxyglucose uptake 2.8- and 2.1-fold in soleus muscle from wild-type and GLUT4-null mice, respectively. Cytochalasin B, an inhibitor of GLUT1- and GLUT4-mediated glucose transport, inhibited insulin-stimulated 2-deoxyglucose uptake by >95% in wild-type and GLUT4-null soleus muscle. Addition of 35 mM fructose to the incubation media was without effect on insulin-stimulated 3-O-methylglucose transport activity in soleus muscle from either genotype, whereas 35 mM glucose inhibited insulin-stimulated (20 nM) 3-O-methylglucose transport by 65% in wild-type and 99% in GLUT4-null mice. We utilized the 2-N-4-1-(1-azi-2,2,2-triflu oroethyl)benzoyl-1, 3-bis(D-mannose-4-yloxy)-2-propylamine (ATB-BMPA) exofacial photolabel to determine if increased cell-surface GLUT1 or GLUT4 content accounted for insulin-stimulated glucose transport in GLUT4-null muscle. In wild-type soleus muscle, cell-surface GLUT4 content was increased by 2.8-fold under insulin-stimulated conditions and this increase corresponded to the increase in 2-deoxyglucose uptake. No detectable cell-surface GLUT4 was observed in soleus muscle from female GLUT4-null mice under either basal or insulin-stimulated conditions. Basal cell-surface GLUT1 content was similar between wild-type and GLUT4-null mice, with no further increase noted in either genotype with insulin exposure. Neither GLUT3 nor GLUT5 appeared to account for insulin-stimulated glucose-transport activity in wild-type or GLUT4-null muscle. In conclusion, insulin-stimulated glucose-transport activity in female GLUT4-null soleus muscle is mediated by a facilitative transport process that is glucose- and cytochalasin B-inhibitable, but which is not labelled strongly by ATB-BMPA.
    [Abstract] [Full Text] [Related] [New Search]