These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Maximization of selenocysteine tRNA and U6 small nuclear RNA transcriptional activation achieved by flexible utilization of a Staf zinc finger. Author: Schaub M, Myslinski E, Krol A, Carbon P. Journal: J Biol Chem; 1999 Aug 27; 274(35):25042-50. PubMed ID: 10455183. Abstract: Transcriptional activators Staf and Oct-1 play critical roles in the activation of small nuclear RNA (snRNA) and snRNA-type gene transcription. Recently, we established that Staf binding to the human U6 snRNA (hU6) and Xenopus selenocysteine tRNA (xtRNA(Sec)) genes requires different sets of the seven C2-H2 zinc fingers. In this work, using a combination of oocyte microinjection, electrophoretic mobility shift assays, and missing nucleoside experiments with wild-type and mutant promoters, we demonstrate that the hU6 gene requires zinc fingers 2-7 for Staf binding and Oct-1 for maximal transcriptional activity. In contrast, the xtRNA(Sec) gene needs the binding of the seven Staf zinc fingers, but not Oct-1, for optimal transcriptional capacity. Mutation in the binding site for Staf zinc finger 1 in the tRNA(Sec) promoter reduced both Staf binding and transcriptional activity. Conversely, introduction of a zinc finger 1 binding site in the hU6 promoter increased Staf binding but interfered with the simultaneous Staf and Oct-1 binding, thus reducing transcriptional activity. Collectively, these results show that the differential utilization of Staf zinc finger 1 represents a new, critical determinant of the transcriptional activation mechanism for the Xenopus tRNA(Sec) and human U6 snRNA genes.[Abstract] [Full Text] [Related] [New Search]