These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Author: Stahl EA, Dwyer G, Mauricio R, Kreitman M, Bergelson J. Journal: Nature; 1999 Aug 12; 400(6745):667-71. PubMed ID: 10458161. Abstract: The co-evolutionary 'arms race' is a widely accepted model for the evolution of host-pathogen interactions. This model predicts that variation for disease resistance will be transient, and that host populations generally will be monomorphic at disease-resistance (R-gene) loci. However, plant populations show considerable polymorphism at R-gene loci involved in pathogen recognition. Here we have tested the arms-race model in Arabidopsis thaliana by analysing sequences flanking Rpm1, a gene conferring the ability to recognize Pseudomonas pathogens carrying AvrRpm1 or AvrB. We reject the arms-race hypothesis: resistance and susceptibility alleles at this locus have co-existed for millions of years. To account for the age of alleles and the relative levels of polymorphism within allelic classes, we use coalescence theory to model the long-term accumulation of nucleotide polymorphism in the context of the short-term ecological dynamics of disease resistance. This analysis supports a 'trench warfare' hypothesis, in which advances and retreats of resistance-allele frequency maintain variation for disease resistance as a dynamic polymorphism.[Abstract] [Full Text] [Related] [New Search]