These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: cDNA isolation, genomic structure, regulation, and chromosomal localization of human lung Kruppel-like factor.
    Author: Wani MA, Conkright MD, Jeffries S, Hughes MJ, Lingrel JB.
    Journal: Genomics; 1999 Aug 15; 60(1):78-86. PubMed ID: 10458913.
    Abstract:
    Lung Kruppel-like factor (LKLF) is a zinc finger transcription factor critical for embryonic development. We have previously identified and isolated the mouse LKLF gene and examined its role using gene targeting. In this report, we describe the isolation and molecular characterization of the human homolog of murine LKLF. The human and mouse LKLF homologs exhibit an 85% nucleotide identity and share 90% amino acid similarity. Furthermore, the 5' sequence in the proximal promoter region and 3' untranslated region are also conserved between the two species. Of particular interest is the finding that while sequences in the proximal promoter have diverged between mouse and human, a region of 75 nucleotides is essentially identical. Site-directed mutagenesis in this region impairs the ability of the LKLF promoter to drive reporter gene expression, indicating that it represents a novel transcriptional element important in the regulation of LKLF gene expression. The activation domain is highly proline-rich and, similar to mouse LKLF, contains 22% proline residues. The human LKLF transcriptional unit is located in a genomic region of approximately 3 kb on chromosome 19p13.1. This region of chromosome 19 is known to contain genes involved in various human diseases. Like mouse LKLF, human LKLF consists of three exons that are interrupted by two small introns. The locations of intron/exon boundaries and splice sites are conserved between two homologs. Northern analysis shows that LKLF is expressed in lung in addition to heart, skeletal muscle, placenta, and pancreas. The isolation and chromosomal mapping of human LKLF will make it possible to initiate studies devoted to assess the involvement of this gene in human disease(s).
    [Abstract] [Full Text] [Related] [New Search]