These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 5-Amino-1-(chloromethyl)-1,2-dihydro-3H-benz[e]indoles: relationships between structure and cytotoxicity for analogues bearing different DNA minor groove binding subunits. Author: Atwell GJ, Milbank JJ, Wilson WR, Hogg A, Denny WA. Journal: J Med Chem; 1999 Aug 26; 42(17):3400-11. PubMed ID: 10464026. Abstract: A series of 5-amino-seco-CBI compounds, designed for use as effectors for prodrugs, were prepared to study structure-activity relationships for the cytotoxicity of side chain analogues. Compounds were prepared by coupling 1-(chloromethyl)-5-nitro-1, 2-dihydro-3H-benz[e]indole to appropriate carboxylic acids, followed by nitro group reduction, or by coupling suitable 5-amino-protected indolines to alpha,beta-unsaturated acids, followed by deblocking. These AT-specific DNA alkylating agents were evaluated for cytotoxicity in a series of tumor cell lines (AA8, UV4, EMT6, SKOV3). For those analogues bearing an indolecarbonyl side chain, the 5'-methoxy derivative was the most cytotoxic (IC(50) 1.3 nM in AA8 cells, 4 h exposure), comparable to that of the parent CBI-TMI (5', 6',7'-trimethoxyindole) derivative (IC(50) 0.46 nM in the above assay). A subset of solubilized derivatives bearing O(CH(2))(2)NMe(2) substituents were about 10-fold less potent. For compounds containing an acryloyl linker in the side chain, the 4'-methoxycinnamoyl derivative proved the most cytotoxic (IC(50) 0. 09 nM in the above assay). A number of these 5-amino-seco-CBI-TMI analogues (including the solubilized compounds) are of interest both as cytotoxins and as components of amine-based prodrugs designed for tumor-specific activation.[Abstract] [Full Text] [Related] [New Search]