These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cyclic strain stress-induced mitogen-activated protein kinase (MAPK) phosphatase 1 expression in vascular smooth muscle cells is regulated by Ras/Rac-MAPK pathways.
    Author: Li C, Hu Y, Mayr M, Xu Q.
    Journal: J Biol Chem; 1999 Sep 03; 274(36):25273-80. PubMed ID: 10464250.
    Abstract:
    Recently, we demonstrated that mechanical stress results in rapid phosphorylation or activation of platelet-derived growth factor receptors in vascular smooth muscle cells (VSMCs) followed by activation of mitogen-activated protein kinases (MAPKs) and AP-1 transcription factors (Hu, Y., Bock, G., Wick, G., and Xu, Q. (1998) FASEB J. 12, 1135-1142). Herein, we provide evidence that VSMC responses to mechanical stress also include induction of MAPK phosphatase-1 (MKP-1), which may serve as a negative regulator of MAPK signaling pathways. When rat VSMCs cultivated on a flexible membrane were subjected to cyclic strain stress (60 cycles/min, 5-30% elongation), induction of MKP-1 proteins and mRNA was observed in time- and strength-dependent manners. Concomitantly, mechanical forces evoked rapid and transient activation of all three members of MAPKs, i.e. extracellular signal-regulated kinases (ERKs), c-Jun NH(2)-terminal protein kinases (JNKs), or stress-activated protein kinases (SAPKs), and p38 MAPKs. Suramin, a growth factor receptor antagonist, completely abolished ERK activation, significantly blocked MKP-1 expression, but not JNK/SAPK and p38 MAPK activation, in response to mechanical stress. Interestingly, VSMC lines stably expressing dominant negative Ras (Ras N17) or Rac (Rac N17) exhibited a marked decrease in MKP-1 expression; the inhibition of ERK kinases (MEK1/2) by PD 98059 or of p38 MAPKs by SB 202190 resulted in a down-regulation of MKP-1 induction. Furthermore, overexpressing MKP-1 in VSMCs led to the dephosphorylation and inactivation of ERKs, JNKs/SAPKs, and p38 MAPKs and inhibition of DNA synthesis. Taken together, our findings demonstrate that mechanical stress induces MKP-1 expression regulated by two signal pathways, including growth factor receptor-Ras-ERK and Rac-JNK/SAPK or p38 MAPK, and that MKP-1 inhibits VSMC proliferation via MAPK inactivation. These results suggest that MKP-1 plays a crucial role in mechanical stress-stimulated signaling leading to VSMC growth and differentiation.
    [Abstract] [Full Text] [Related] [New Search]