These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Myosin light chain kinase inhibitors and calmodulin antagonist inhibit Ca(2+)- and ATP-dependent catecholamine secretion from bovine adrenal chromaffin cells. Author: Matsumura C, Kuwashima H, Kimura T. Journal: J Auton Pharmacol; 1999 Apr; 19(2):115-21. PubMed ID: 10466945. Abstract: We have used stage-specific assays for ATP-dependent priming and for Ca(2+)-activated triggering in the absence of ATP to examine the effects of myosin light chain kinase (MLCK) inhibitors, ML-9 and ML-7, and calmodulin antagonists, W-7 and trifluoperazine (TFP), on regulated exocytosis in beta-escin-permeabilized bovine adrenal chromaffin cells. Ca2+ (0.1-30 microM) induced a significantly greater secretion of catecholamines in the presence of MgATP (2 mM) than in the absence of MgATP. ML-9 (30 and 100 microM), ML-7 (30 and 100 microM), W-7 (30 and 100 microM) and TFP (10 and 30 microM) inhibited the Ca(2+)-induced catecholamine secretion in the presence of MgATP, but did not affect the catecholamine response to Ca2+ in the absence of MgATP. In intact cells all these compounds inhibited catecholamine secretion in responses to acetylcholine (100 microM) and high K+ (40 mM). The results obtained in permeabilized cells suggest that the calmodulin-MLCK system plays an essential role in the ATP-requiring priming stage but not in the Ca2(+)-triggered fusion step in the exocytotic process in bovine adrenal chromaffin cells.[Abstract] [Full Text] [Related] [New Search]