These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Syntaxin 1 interacts with the L(D) subtype of voltage-gated Ca(2+) channels in pancreatic beta cells.
    Author: Yang SN, Larsson O, Bränström R, Bertorello AM, Leibiger B, Leibiger IB, Moede T, Köhler M, Meister B, Berggren PO.
    Journal: Proc Natl Acad Sci U S A; 1999 Aug 31; 96(18):10164-9. PubMed ID: 10468580.
    Abstract:
    Interaction of syntaxin 1 with the alpha(1D) subunit of the voltage-gated L type Ca(2+) channel was investigated in the pancreatic beta cell. Coexpression of the enhanced green fluorescent protein-linked alpha(1D) subunit with the enhanced blue fluorescent protein-linked syntaxin 1 and Western blot analysis together with subcellular fractionation demonstrated that the alpha(1D) subunit and syntaxin 1 were colocalized in the plasma membrane. Furthermore, the alpha(1D) subunit was coimmunoprecipitated efficiently by a polyclonal antibody against syntaxin 1. Syntaxin 1 also played a central role in the modulation of L type Ca(2+) channel activity because there was a faster Ca(2+) current run-down in cells incubated with antisyntaxin 1 compared with controls. In parallel, antisyntaxin 1 markedly reduced insulin release in both intact and permeabilized cells, subsequent to depolarization with K(+) or exposure to high Ca(2+). Exchanging Ca(2+) for Ba(2+) abolished the effect of antisyntaxin 1 on both Ca(2+) channel activity and insulin exocytosis. Moreover, antisyntaxin 1 had no significant effects on Ca(2+)-independent insulin release trigged by hypertonic stimulation. This suggests that there is a structure-function relationship between the alpha(1D) subunit of the L type Ca(2+) channel and the exocytotic machinery in the pancreatic beta cell.
    [Abstract] [Full Text] [Related] [New Search]