These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Oxygen cost of dynamic leg exercise on a cycle ergometer: effects of gravity acceleration.
    Author: Girardis M, Linnarsson D, Moia C, Pendergast DR, Ferretti G.
    Journal: Acta Physiol Scand; 1999 Jul; 166(3):239-46. PubMed ID: 10468661.
    Abstract:
    A model of the metabolic internal power (Eint) during cycling, which includes the gravity acceleration (ag) as a variable, is presented. This model predicts that Eint is minimal in microgravity (0 g; g=9. 81 m s-2), and increases linearly with ag, whence the hypothesis that the oxygen uptake (VO2) during cycling depends on ag. Repeated VO2 measurements during steady-state exercise at 50, 75 and 100 W on the cycle ergometer, performed in space (0 g) and on Earth (1 g) on two subjects, validated the model. VO2 was determined from the time course of decreasing O2 fraction during rebreathing. The gas volume during rebreathing was determined by the dilution principle, using an insoluble inert gas (SF6). Average VO2 for subject 1 at each power was 0.99, 1.21 and 1.52 L min-1 at 1 g (n=3) and 0.91, 1.13 and 1.32 L min-1 at 0 g (n=5). For subject 2 it was 0.90, 1.12 and 1. 42 L min-1 at 1 g, and 0.76, 0.98 and 1.21 L min-1 at 0 g. These values corresponded to those predicted from the model. Although resting VO2 was lower at 0 g than at 1 g, the net (total minus resting) exercise VO2 was still smaller at 0 g than at 1 g. This difference reflects the lower Eint at 0 g.
    [Abstract] [Full Text] [Related] [New Search]