These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential expression of and responsiveness to transforming growth factor-beta (TGF-beta) isoforms in hormone-dependent and independent lines of mouse mammary tumors.
    Author: Viegas MH, Salatino M, Goin M, Peters G, Labriola L, Costa da cunha J, Lanari C, Charreau EH, Elizalde PV.
    Journal: Cancer Detect Prev; 1999; 23(5):375-86. PubMed ID: 10468889.
    Abstract:
    Transforming growth factor-beta2 (TGF-beta2) and -beta3 mRNA expressions were studied in ductal hormone-dependent (HD) and -independent (HI) in vivo lines of the medroxyprogesterone acetate (MPA)-induced mammary tumor model in Balb/c mice. MPA treatment of HD tumors induced a significant decrease in TGF-beta2 and -beta3 mRNA levels. Progression to an HI phenotype of ductal tumors was associated with reduced TGF-beta2 and -beta3 expressions, as compared with their HD counterparts. Exogenously added TGF-beta1, -beta2, and -beta3 (1 ng/ml) inhibited the proliferation of primary cultures of epithelial cells from ductal HD and HI tumors. In addition, TGF-beta expression and effects were studied in the other type of MPA-induced mammary tumors, which are of lobular origin and lack steroid hormone receptors and evidence an HI behavior. These lobular HI lines showed TGF-beta2 levels similar to those found in HD lines growing in MPA-treated mice. In contrast, TGF-beta3 mRNA levels were 12- to 20-fold higher than in HD tumors. Primary cultures of lobular HI epithelial cells required either TGF-beta concentrations of 10 ng/ml to show an inhibitory response, or were completely resistant to TGF-beta inhibition. Studies of the molecular mechanisms involved in reduction or loss of TGF-beta responsiveness in lobular HI tumors showed that cell surface type II TGF-beta receptor levels were lower in these tumors than those present in HD tumors. Our results support the hypothesis that TGF-beta could play a role as an autocrine growth inhibitor in HD and HI ductal tumors. Autonomous growth of lobular HI tumors could be favored by undetectable or low TGF-beta1 and -beta2 expressions and by reduced or lost sensitivity of epithelial cells to TGF-beta's antiproliferative effects. However, the extremely high levels of TGF-beta3 expression in lobular HI tumors, in spite of reduced sensitivity to TGF-beta3 inhibitory growth effect in tumor epithelial cells, suggest a net positive role for TGF-beta3 in these tumors.
    [Abstract] [Full Text] [Related] [New Search]