These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanism of FK 506/520 action on rat renal proximal tubular Na+, K+-ATPase activity.
    Author: Holtbäck U, Eklöf AC.
    Journal: Kidney Int; 1999 Sep; 56(3):1014-21. PubMed ID: 10469369.
    Abstract:
    BACKGROUND: The neurotransmitter in renal sympathetic nerves, norepinephrine (NE), regulates the activity of proximal tubule (PT) Na+,K+-ATPase in a bidirectional manner via stimulation of alpha- and beta-adrenoceptors. The stimulatory alpha-adrenergic pathway is mediated by calcineurin, the target molecule for FK 506 and related compounds. We examined whether the FK 506 analogue FK 520, by interrupting the calcineurin-mediated alpha-adrenergic signaling pathway, enhance the inhibitory beta-adrenergic effect of NE on PT Na+,K+-ATPase activity. METHODS: The effects of three days of treatment with FK 520 were examined on rat renal PT Na+,K+-ATPase activity, measured as ouabain-sensitive ATP hydrolysis in single, microdissected PT segments. Renal function studies, including glomerular filtration rate (GFR) and urinary excretion of N-acetyl-3-D-glucoseaminidase (NAG), were examined using conventional clearance techniques after three days of treatment with FK 506. RESULTS: FK 520 treatment induced a pronounced and dose-dependent decrease in PT Na+,K+-ATPase activity. This effect was completely reversed by the competitive FK 520 antagonist, L 685 818, indicating that the effect was dependent on inhibition of calcineurin. To test whether the FK 520-induced decrease in Na+, K+-ATPase activity was mediated by enhanced beta-adrenoceptor signaling, the FK 520 effect was examined in rats pretreated with a beta-adrenoceptor antagonist (propranolol) or rats subjected to renal denervation. Both of these procedures prevented the FK 520-induced decrease in Na+,K+-ATPase activity. Thus, during FK 520 treatment, renal sympathetic nerves mediate an inhibitory effect on PT Na+,K+-ATPase activity via beta-adrenoceptors. Propranolol pretreatment also prevented FK 506-induced decreases in GFR and urinary excretion of NAG, an index of PT dysfunction. CONCLUSIONS: The results support the hypothesis that the net effect of the neurotransmitter NE on Na+,K+-ATPase activity is dependent on the balance between the alpha- and beta-adrenergic signaling pathways and suggest that agents that interfere with these pathways may, by altering the activity of tubular Na+,K+-ATPase, also alter the function of the renal tubular epithelial cell.
    [Abstract] [Full Text] [Related] [New Search]