These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Diffusive and convective solute clearances during continuous renal replacement therapy at various dialysate and ultrafiltration flow rates.
    Author: Brunet S, Leblanc M, Geadah D, Parent D, Courteau S, Cardinal J.
    Journal: Am J Kidney Dis; 1999 Sep; 34(3):486-92. PubMed ID: 10469859.
    Abstract:
    Clearances of several solutes (urea, creatinine, phosphate, urates, beta(2)-microglobulin [beta(2)-M]) were measured during venovenous continuous renal replacement therapy (CRRT) at various ultrafiltration (Q(UF); 0 to 2 L/h) and dialysate flow rates (Q(D); 0 to 2.5 L/h). Preset Multiflow-60 and Multiflow-100 hollow-fiber dialysers (M-60 and M-100; Hospal-Gambro, St-Leonard, Canada) were compared (five patients for each type). First, we evaluated the impact of predilution on convective clearances: a progressive decrease in patient clearances, similar for both filters, was observed, reaching a maximum of 15%, 18%, and 19% for urea, urates, and creatinine, respectively, with predilution at a Q(UF) of 2 L/h. Second, we compared convective and diffusive clearances. Because effluent to plasma ratio (E/P) remained at 1 for small solutes (urea, creatinine, phosphate, urates) during convection, clearances were equal to the effluent rate for both dialyzers. However, we observed greater diffusive clearances for small molecules with M-100 than with M-60 at a Q(D) of 1.5 to 2.5 L/h, the difference being more significant as molecular weight increased. For beta(2)-M, diffusive clearance was very low and rapidly reached a plateau of 8 and 12 mL/min for M-60 and M-100, respectively, at a Q(D) greater than 1.5 L/h. Convective clearances for beta(2)-M increased nonlinearly up to 20 +/- 2 mL/min at a progressively greater Q(UF) (from 0.5 to 2 L/h) for both M-60 and M-100. This nonlinear increase was attributed to an increase of almost 40% in E/P for beta(2)-M from a Q(UF) of 0.5 to 2 L/h. Third, the interaction between convection and diffusion was assessed by measuring solute clearances at a fixed Q(UF) (1 and 2 L/h) and variable Q(D) (0.5 to 2.5 L/h). For small molecules, no significant interaction between convection and diffusion was noticed with M-100, whereas only a small interaction was noticed with M-60. However, for beta(2)-M, the addition of diffusion (Q(D), 0.5 to 2.5 L/h) did not result in any significant increase in total clearances over convective clearances for M-60 and M-100. This observation suggests that the diffusive clearances for beta(2)-M observed with M-60 and M-100 at a Q(UF) of 0 L/h and at various Q(D) probably occurs by convective fluxes across the membrane. These results demonstrate that convection is more efficient than diffusion in removing mixed-molecular-weight solutes during CRRT.
    [Abstract] [Full Text] [Related] [New Search]