These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Responses of monkey epididymal sperm of different maturational status to second messengers mediating protein tyrosine phosphorylation, acrosome reaction, and motility. Author: Yeung CH, Weinbauer GF, Cooper TG. Journal: Mol Reprod Dev; 1999 Oct; 54(2):194-202. PubMed ID: 10471480. Abstract: The maturation of various aspects of sperm function have been demonstrated in monkey and human epididymal sperm, including the ability to undergo the acrosome reaction. The present study aimed to investigate the maturational changes in non-human primate sperm in the signal transduction mechanisms leading to the acrosome reaction involving cyclic AMP, Ca(2+) influx, protein kinase C, and protein tyrosine phosphorylation. Sperm from the caput, corpus, and cauda epididymidis of cynomolgus monkeys were incubated in a complete medium for 2.5 hr, followed by 30 min stimulation with 1 mM dibutyryl cAMP and 1 mM caffeine, 50 microM 1, 2-dioctanoyl-sn-glycerol (DOG), and 50 microM Ca(2+)-ionophore A23187. Quantitative Western blotting revealed little difference in tyrosine phosphorylated proteins among the caput, corpus, and cauda sperm without stimulation. Incubation with cAMP increased the amount of tyrosine phosphorylated proteins up to 10-fold in the corpus and cauda sperm, but to a lower extent in the caput sperm. Ca(2+)-ionophore attenuated the cAMP stimulation but had no effect on its own. Such responses in tyrosine phosphorylated proteins were in great contrast to the responses in the acrosome reaction, where A23187 was the strongest stimulant, resulting in induction of the reaction in 50 +/- 5%, 11 +/- 5%, and 8 +/- 4% cauda, corpus and caput sperm, respectively (mean +/- sem, n = 6). DOG and cAMP in combination induced acrosome reactions in about 10% of viable cells in the cauda and corpus but not caput sperm. Caput sperm responded to cAMP with increases in percentage motility without forward progression whereas cauda sperm displayed marked kinematic changes expected of hyperactivation. Comparisons of responses suggest that the major tyrosine phosphorylated proteins detected are unlikely to be involved immediately in the precipitation of the acrosome reaction, but more related to flagellar motion. Development of signal transduction pathways is part of the epididymal maturational process.[Abstract] [Full Text] [Related] [New Search]